Delayed abscission and shorter Internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato.
نویسندگان
چکیده
Stable transformation of tomato (Lycopersicon esculentum cv Ailsa Craig) plants with a construct containing the antisense sequence for the receiver domain and 3'-untranslated portion of the tomato ethylene receptor (LeETR1) under the control of an enhanced cauliflower mosaic virus 35S promoter resulted in some expected and unexpected phenotypes. In addition to reduced LeETR1 transcript levels, the two most consistently observed phenotypes in the transgenic lines were delayed abscission and reduced plant size. Fruit coloration and softening were essentially unaffected, and all the seedlings from first generation seed displayed a normal triple response to ethylene. Two independent lines with a single copy of the transgene and reduced LeETR1 transcript accumulation were selected for detailed phenotypic analysis of second generation (R1) plants. Delayed abscission, shorter internode length, and reduced auxin movement all correlated with the presence of the transgene and the degree of reduced LeETR1 transcript accumulation. No significant differences were noted for fruit coloration or fruit softening on R1 plants and all seedlings from R1 and R2 seed displayed a normal triple response. LeETR2 transcript accumulation was only slightly reduced in the R1 plants compared with azygous plants, and LeETR3 (NR) transcript levels appeared to be unaffected by the transgene. We propose that ethylene signal transduction occurs through parallel paths that partially intersect to regulate shared ethylene responses.
منابع مشابه
The tomato ethylene receptors NR and LeETR4 are negative regulators of ethylene response and exhibit functional compensation within a multigene family.
The plant hormone ethylene is involved in many developmental processes, including fruit ripening, abscission, senescence, and leaf epinasty. Tomato contains a family of ethylene receptors, designated LeETR1, LeETR2, NR, LeETR4, and LeETR5, with homology to the Arabidopsis ETR1 ethylene receptor. Transgenic plants with reduced LeETR4 gene expression display multiple symptoms of extreme ethylene ...
متن کاملFruit quality of transgenic tomatoes with suppressed expression of LeETR1 and LeETR2 genes.
Tomato fruit is renowned for its high concentration of phyto-nutrients such as lycopene and carotenoids, overall contribution to nutrition and human health. The effect of antisense suppression of ethylene receptor genes LeETR1 and LeETR2 over the quality of tomato fruit was investigated in this paper. During the different stages of ripening, the fruit of antisense transgenic tomatoes of ale1 an...
متن کاملSlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development
The gaseous hormone ethylene is perceived by a family of ethylene receptors which interact with the Raf-like kinase CTR1. SlTPR1 encodes a novel TPR (tetratricopeptide repeat) protein from tomato that interacts with the ethylene receptors NR and LeETR1 in yeast two-hybrid and in vitro protein interaction assays. SlTPR1 protein with a GFP fluorescent tag was localized in the plasmalemma and nucl...
متن کاملAtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis
Arabidopsis AtTRP1 is an orthologue of SlTPR1, a tomato tetratricopeptide repeat protein that interacts with the tomato ethylene receptors LeETR1 and NR in yeast 2-hybrid assays and in vitro, and modulates plant development. AtTRP1 is encoded by a single copy gene in the Arabidopsis genome, and is related to TCC1, a human protein that competes with Raf-1 for Ras binding, and distantly related t...
متن کاملHAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission.
Abcission, the natural shedding of leaves, flowers and fruits, is a fundamental component of plant development. Abscission is a highly regulated process that occurs at distinct zones of cells that undergo enlargement and subsequent separation. Although some components of abscission, including accumulation of the hormone ethylene and cell wall-degrading enzymes, have been described, the regulato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 128 3 شماره
صفحات -
تاریخ انتشار 2002